North Mountain IMS Medical Office Building

Phoenix, Arizona

Michael Hopple

<u>Technical Assignment 3</u> December 3rd, 2007 AE 481W-Senior Thesis The Pennsylvania State University Faculty Adviser: Dr. Ali Memari, P.E.

Table of Contents

Executive Summary	Page 3
Codes and Standards	Page 4
Loading Analysis	Page 5
Typical Framing Plans and Details	Page 7
Lateral Load Resisting System	Page 10
Load Distribution	Page 12
Building Torsion	Page 13
Drift	Page 14
Conclusions	Page 15
Appendix	Page 16
Wind Load Calculation	Page 16
Seismic Load Calculation	Page 19
Story Forces	Page 21
Shear Wall Layout	Page 22
Equivalent Thickness	Page 23
Shear Wall Stiffness	Page 25
Seismic Force Distribution	Page 26
Center of Rigidity	Page 28
Torsional Moment of Inertia	Page 29
Torsional Shear	Page 30
Shear Wall Schedule	Page 33
Shear Wall Overturning	Page 35
Shear Wall Spot Check	Page 40

Executive Summary

North Mountain IMS Medical Office Building utilizes a complete precast concrete framing system. An overview of the entire system can be found in the Typical Framing Plans and Details section. However, this report will focus on analysis and design of the lateral load resisting system. Lateral loads are supported mostly by exterior shear walls; interior shear walls also resist lateral loads.

The lateral load resisting system is explored and analyzed using the PCI Design Handbook, hand calculations, and an ETABS computer model. Both wind and seismic loads are compared resulting with seismic loading controlling lateral design. Hand calculations include determining and distributing lateral forces. Since the precast concrete double tee floor framing provides a rigid diaphragm, lateral loads are distributed based on relative stiffness. The center of rigidity is not the center of lateral load, so torsional effects are also considered within this report. Drift analysis, wall overturning calculations, and a strength check of a shear wall are also included within this report.

The shear wall forces calculated within this report are compared to values listed on the design drawings, resulting in a few discrepancies. Further investigation into the assumptions made for the hand calculations is needed to close these discrepancies to acceptable tolerances.

Codes and Standards

Note: The Senior Thesis project requires the use of the most current codes and standards, those referenced for calculations in this report are listed at the end of this section.

Building Codes:

- 1. International Building Code (IBC), 2003 edition
- 2. International Energy Code (IECC), 2003 edition with 2004 supplements
- 3. National Electric Code (NEC), 2005 edition with Phoenix amendments
- 4. International Mechanical Code (IMC), 2003 edition with Phoenix amendments
- 5. Arizona State Plumbing Code, with 2003 supplements
- 6. Uniform Fire Code (UFC), 1997 edition with Phoenix amendments

Structural Codes:

- 1. American Concrete Institute (ACI-318), 2002 edition
- 2. Precast Concrete Institute (PCI), 6th edition

Building Design Loads:

1. American Society of Civil Engineers (ASCE-7), 2002 edition

Thesis Project Codes and Loads:

IBC 2005
 ASCE-7, 2005
 ACI-318 2005
 AISC 2005
 PCI, 6th edition

Loading Analysis

Design Loads: Live Loads: • • • Dead Loads: • • Superimposed Floor Dead Load......15 psf Wind Load: Seismic Load:

Gravity Loads:

The floor live loads for North Mountain are typical office loads. The second, third, and forth floors all feature an open floor plan with no set dimensions for walls or corridors. Because of the open floor plan, the floor live load is 80 psf. By code, corridor loading above the first floor is 80 psf. However, 50 psf is the minimum recommended live load for office space above the first floor. For design, the corridor value was used as the live load over the entire floor; it is much easier to assume a uniform load over the entire floor compared to breaking the loads down between office and corridors. Also, a partition live load of 20 psf is used over the entire floor.

The floor dead load only accounts for 15 psf of superimposed load which includes mechanical, electrical, and pluming equipment. The nature of precast concrete structures makes it very simple to calculate the actual weight of the structure; a dead load in pounds per square foot is not needed because each piece of precast is detailed and the exact weight calculated. Tabulated structure weights can be found on pages 12-15 in the Appendix.

In Phoenix, there is no snow load. However, a roof live load is still required. This live load accounts for potential ponding of rain water and construction loads.

Wind Load:

Wind Load Factors: Basic Wind Speed, V = 90 mph Importance Factor, I = 1.15 Occupancy Category, IV Exposure Category, B Topographic Factor, Kzt = 1.0 Gust Factor, G = 0.803 (E-W) 0.814 (N-S) Exposure Classification, Enclosed Internal Pressure Coefficient, GCpi = +-0.18 External Pressure Coefficient, Cp = 0.8 (Windward) -0.5 (Leeward) -0.7 (Side) Wind load was not expected to control the lateral design due to the overall dimensions of North Mountain. The building is fairly short and it is not located in a high wind zone. Also, there are no abnormal site features, such as hills or valleys, which would increase the wind speed. Wind load calculations are based on ASCE 7 Method 1. The resulting calculations gave a base shear value of 218 kips in the North-South direction and 285 kips in the East-West direction. Complete wind load calculations are provided in the Appendix on page 16.

Seismic Load:

Seismic Load Factors: Seismic Response Coefficient, Cs = 0.0769Total Dead Load, W = 21,153 kips Spectral Response Accelerations, Ss = 0.256, S₁ = 0.075Site Classification, C Response Accelerations, Sms = 0.307, Sm₁ = 0.1285% Damped Design Spectral Response Accelerations, Sds = 0.205, Sd₁ = 0.085Approximate Fundamental Period, Ta = 0.409 s

Seismic loading controls the lateral design. The design base shear for seismic loads is actually over five times higher than the shear load due to wind. The precast structure is very heavy, which is the main cause for such a high seismic load. The calculated design base shear is 1627 kips. Complete seismic load calculations can be found on page 19 in the Appendix.

Typical Framing Plans and Details

North Mountain IMS Office Building floor framing consists of 24" deep, 10' wide double tees with a minimum of 3-1/4" concrete topping. The tees are normal-weight concrete and have a 28-day compressive strength of 6,000 psi. The minimum prestress release strength is 4,200 psi. The prestressing strand is 7 wire, ½" diameter 270 ksi low relaxation strand. Each strand is pulled to 72.5% capacity, which results in a 30 kip force. The strand is held down at one point in the middle of the tee. Depressed strand provides greater flexural strength while reducing the stresses in the concrete during prestress release. Typical spans are 44', 48', and 54'. A typical floor plan is shown below.

The 24" deep double tees are supported on the interior by 24" deep by 32" wide inverted tee girders. 28-day strength is 7,500 psi and minimum release strength is 3,750 psi. Typical inverted tee girders use 22 $\frac{1}{2}$ " diameter stand for tensile reinforcement. Span length for a 30' bay is 28' due to the columns on each end. Dapped ends on the double tees allow the top of the tee to line flush with the top of the girder. The topping is then poured over the tee and the girder at the same time, interlocking them. This construction technique is known as emulation. Emulation design creates construction that is either monolithic at critical joints, or provides connections that act as if they are monolithic at those locations. This is a great way to connect precast pieces in high seismic zones.

Interior spans of inverted tee girders bear on 24" x 24" columns. Concrete strength is 6,000 psi. There is no need for prestressing strand in columns, because there is no large tensile zone. Any tension in the columns is addressed with traditional reinforcing bars. These columns are 56' tall and arrive on site in one piece. These columns showcase precast concrete's advantages over other structural systems. The columns only need one connection, to the foundation. This ease of construction makes North Mountain's erection duration much shorter compared to other systems. However, long lead times may be an issue due to cure time and storage at the precast fabrication plant. A typical interior elevation is shown below to demonstrate the bearing conditions for inverted tee girders and columns.

The exterior walls for North Mountain IMS Office Building fulfill many different structural requirements. First, and most importantly, they provide the building enclosure. Second, they support gravity load from double tees. Third, the walls are detailed to provide a pleasant architectural aesthetic. Last, but also extremely important, they resist the lateral forces due to wind and earthquakes. These walls give the structure its rigidity and structural integrity. Without shear walls, a moment-resisting frame system would have to be used. This structure utilizes interior and exterior shear walls. The interior shear walls are located in the center of the building around the elevator shaft and a stair tower. Shear wall design will be discussed at length in the Lateral Load Resisting System section of this report.

Below is an exterior elevation. It is easy to notice the different textures applied to the exterior of these walls. These finishes are applied when the panels are cast, which makes for no further work when they arrive on site. Also, the exterior wall sections depict the bearing condition for double tees.

Lateral Load Resisting System

As stated previously, North Mountain IMS Office Building uses a lateral load resisting system comprised entirely of shear walls. These shear walls resist code required earthquake load as well as provide the building envelope. The walls also support double tees and inverted tee girders. This added weight is useful because it increases the panel's resistance to uplift and overturning.

The lateral load collected in the diaphragm is transferred to the shear wall through a series of connections. The figure below illustrates a typical connection along the edge of a double tee. A similar connection is used above each stem at the end of a double tee.

Spaced at equal distances, a plate is embedded into the shear walls. Careful coordination and detailing ensure that these elements are in the correct location. A small plate with rebar attached, is welded to the plate in the shear wall. This plate is suspended until the concrete topping is poured. Both the weld and the embedded bars must be sized correctly for the given shear in each connection. The entire connection is then covered by the concrete topping, keeping the welded plates out of view. The scope of this report does not necessitate calculations to verify strength of the above connection. However, these connections are an extremely important part of the later load resisting system.

Connecting each wall panel to the foundation requires embedded plates in both the foundation and the wall. The type of connection used is referred to as a "v" connection; because the plate in the panel looks like a "v". The connection is detailed in the figure below.

There is another connection used to secure the shear walls to the foundation. Lenton manufactures an interlocking rebar system which is utilized to resist the tensile forces caused by overturning. Details of this system are shown below.

When the panels arrive on site, they are placed over dowels protruding out of the foundation. The Lenton connectors slide over the dowels and is then pumped with grout. When the grout cures, the connection provides a continuous link from the top shear wall to foundation. This detail is also used when connecting panel to panel.

Load Distribution

To determine the seismic load distribution, each exterior wall must be considered either a shear wall or ordinary wall. Walls with large openings, such as doors, were not selected as shear walls. The ordinary walls can be neglected from the lateral load resisting system because they will not be attached to the diaphragm. Also, in the event of an earthquake, it is assumed that these walls will yield and load will be redistributed to other shear walls. Referring to the shear wall layout diagram on page 22 in the Appendix, there are 14 shear walls to resist seismic forces in the x-direction and 9 shear walls in the y-direction.

Rigid floor diaphragms distribute lateral forces to individual shear walls by stiffness; flexible floor diaphragms distribute lateral forces by tributary area. So, the first condition effecting load distribution that must be analyzed is the diaphragm. The behavior of the diaphragm as either flexible or rigid depends on many factors including span, aspect ratio and connections. Based on these factors and following PCI standard practice, it is reasonable to assume that the floor diaphragm is rigid. Most precast concrete structures are assumed to be rigid diaphragms.

Since the assumption of a rigid diaphragm has been made, stiffness calculations for each shear wall must be performed. Stiffness was determined for each wall using the equation $k=12*E*I/z^3$, where E is the modulus of elasticity of the concrete, I is the moment of inertia, and z is the wall height. A spread sheet calculating stiffness is provided in the Appendix on page 25. Since each shear wall has window openings, ledges, and other geometrical abnormalities, finding an equivalent thickness for each wall was necessary to simplify load distribution. Also, the panels vary thickness on each level. The equivalent thickness was calculated by adding the volume of all precast panels in a vertical wall and then dividing by the area the wall occupies in elevation. The openings were included in the area. It should be recognized that the perforated exterior shear walls will behave more like individual frames than solid concrete shear walls. This may be investigated further in later reports to determine a more accurate lateral load distribution. Equivalent thickness calculations can be found on page 23 in the Appendix.

Everything is now prepared to calculate the forces to each shear wall. The equation used to distribute forces is $F=k/\Sigma k$, which is the individual wall stiffness divided by the sum of all wall stiffness's in the same direction. The direct shear distribution for each wall is on page 26 in the Appendix. These values are direct shear only, meaning that building torsion effects have not been included. Building torsion will be discussed in the next section of this report.

Building Torsion

Building torsion is caused by an eccentricity of the lateral load and the center of rigidity. The PCI Design Handbook prescribes that actual and accidental torsion be accounted for. Accidental torsion only needs to be considered if the eccentricity in a given direction is less than 5% of the plan dimension in the same direction. Eccentricities in both plan directions are greater than 5%, therefore only actual torsion will be considered. The shear wall layout on page 22 in the Appendix shows the location of both the center of mass and the center of rigidity. Based on these calculations, the center of rigidity produces an eccentricity in the x-direction of 35'-6'' and 27'-0'' in the y-direction.

The equation used to calculate the additional shear produced by the torsional moment in each shear wall, was $V_i = V^*e^*d_i^*k_i/J$. V is the base shear, e is the eccentricity, d_i is the distance of the individual shear wall to the center of rigidity, k_i is the wall stiffness and J is the torsional moment of inertia. J is calculated by the equation $\Sigma k_i d_i^2$. The calculation for J is on page 29 and the torsional shear calculations are on page 30 in the Appendix.

<u>Drift</u>

Drift calculations were determined by ETABS. The computer program calculated a maximum drift of 0.21" in the y-direction and 0.15" in the x-direction. Industry standards restrict a building to drift no more than H/400. This would allow the top story to deflect a maximum of 1.68". Clearly, drift in each direction does not control the design of the shear walls.

Conclusions

The shear wall comparison summary is shown below. There are many discrepancies between the two sets of data. Further investigation is required to determine the factors accounting for the differences.

Tech 3 Results				Design Documents							
Choor Wall		Lateral Load	to Wall (Ult	imate)		Lateral Load to Wall (Ultimate)					
Shear wall	2 nd floor	3 rd floor	4 th floor	Roof	Total	Shear Wall	2 nd floor	3 rd floor	4 th floor	Roof	Total
B _{x1}	24.2	37.4	62.8	61.2	158.6	SW10	0.0	22.0	35.0	57.0	114.0
F _{x2}	2.0	3.2	5.4	5.3	15.9	SW4	53.0	1.0	8.0	4.0	66.0
F _{x3}	2.0	3.1	5.3	5.2	15.6	SW6	82.0	22.0	25.0	5.0	134.0
E _{x4}	12.8	20.5	34.4	33.5	101.2	SW10	0.0	22.0	35.0	57.0	114.0
B _{x5}	21.2	32.6	54.6	53.3	161.7	SW10	0.0	22.0	35.0	57.0	114.0
A _{x6}	25.1	40.1	67.4	65.7	198.3	SW10A	33.0	27.0	42.0	79.0	181.0
C _{x7}	32.8	52.4	88.1	85.9	259.2	SW2	65.0	91.0	113.0	71.0	340.0
D _{x8}	16.2	25.8	43.5	42.3	127.8	SW9	5.0	13.0	21.0	42.0	81.0
A _{y1}	41.6	66.3	111.6	108.5	328.0	SW10A	33.0	27.0	42.0	79.0	181.0
B _{y2}	33.6	53.8	90.5	88.1	266.0	SW10	0.0	22.0	35.0	57.0	114.0
E _{y3}	5.7	9.1	15.4	15.0	45.2	SW3	103.0	64.0	88.0	15.0	270.0
D _{y4}	9.0	14.3	24.0	23.5	70.8	SW9	5.0	13.0	21.0	42.0	81.0
A _{y5}	30.8	49.0	82.7	80.3	249.9	SW10B	12.0	20.0	40.0	100.0	172.0
C _{y6}	48.9	78.1	131.4	128.0	386.4	SW7	70.0	94.0	120.0	94.0	378.0

The design professional modeled the building in ETABS, and used the program to determine the lateral load distribution. The shear walls in ETABS were modeled more accurately than the hand calculations presented in this report. Since the walls have large perforations, each shear wall will behave as an individual frame and therefore have a different stiffness and deflection when compared to a solid concrete wall. Assumptions for hand calculations will have to be reevaluated, so that shear values for both sets of calculations close to acceptable tolerances.

<u>Appendix</u>

Wind Load Calculation

MICHAEL HOPPLE TECH ASSIGNMENT I
WIND LOAD
MAIN WIND-FORCE RESISTING SUSTEM: METHOD 2 (ASCET-05, SECTION G.S)
1. BASIC WIND SPEED V= 90 mph (FIGURE 6-1)
2. IMPORTANCE FACTOR I = 1.15 (TABLE 6-1)
OCCUPANCY CATEGORY IV (HEALTH CARE FACILITY HAVING (TABLE 1-1) SURGERY OR EMERGENCY TREATMENT)
3. EXPOSURE CATEGORY B (SECTION 6.5.6.3)
4. TOPOGRAPHIC FACTOR KEt = 1.0
5. GUST EFFECT FACTOR G=0.803 (EAST-WEST), G=0.814 (MORTH-SOUTH)
$G = 0.925 \left(\frac{(1+1.7)}{1+1.7} + 1.7} \right) = 0.925 \left(\frac{(1+1.7)}{(3.4)(6.299)} + 0.803(E-W)}{1+1.7} \right) = 0.803(E-W)$ (Assumes) $I + 1.7(3.4)(6.299) = 0.814 (W-S)$
$STRUCTURE)$ $I\overline{z} = C\left(\frac{33}{\overline{z}}\right)^{1/6} = 0.3\left(\frac{33}{33.6}\right)^{1/6} = 0.299$
$Z = 0.6 h = 0.6(56') = 33.6' > Z_{min} = 30'$ C = 0.30 (TARLE 6-2)
$Q = \int \frac{1}{1 + \rho (E^2)^2} = \int \frac{1}{1 + \rho (E^2)^2} = \frac{1}{1 + \rho ($
$\frac{1}{L_{2}} = \frac{1}{L_{2}} = \frac{1}{2} + 0.63 \left(\frac{292+56}{321.9}\right) = 0.810 (N-S)$
$L_{\overline{z}} = l \left(\frac{\overline{z}}{33}\right)^{\overline{e}} = 320 \left(\frac{33.6}{3}\right)^{\overline{3}} = 321.9$
Note: SUBSTITUDE B = 184 FOR NORTH-SOUTH DERECTION

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TECH ASSIG !	UMENT 1					
10. DESTGN WITND LOAD $P=q_{h}\left[G-C_{Pf}-G-C_{P}\right] (6-18) ; q_{h}=q_{2}, G=0.803(E-W) \\G=0.819(W-S) \\G=0.8WINDWARD \\C_{Pf}=0.8WINDWARD \\C_{Pf}=0$	WIND	LOAD (CONT.)				
$P = q_{h} \left[G \cdot C_{PF} - G \cdot C_{P} : \right] (6-18) ; q_{h} = q_{2}, G = 0.803 (E-w) \\ G = 0.8 w TM DWARD \\ -0.5 w TM DWARD \\ -0.5 (EEWARD) \\ C_{Pf} = 0.8 w TM DWARD \\ -0.5 (EEWARD) \\ C_{Pf} = \pm 0.18 \\ HETGHT P (p=f) \\ 0-30' 11.3 \\ 30-90' 12.3 \\ 13.7 \\ 40-50' 13.1 \\ 13.1 \\ 10' 22.6^{c} \\ 50-60' 13.7 \\ 12.3 \\ 50' 62.4^{c} \\ 62.4^{c$	10. DE	SIGN (NIND L	OAD			
FOR N-S WINWARD $P_{0} = 0.8 WINDWARD$ $P_{0} = 0.8 WINDWARD$ -0.5 LEEWARD $P_{1} = 0.8 WINDWARD$ -0.5 LEEWARD $P_{1} = \pm 0.18$ HEIGHT P (PSF) 0-30' 11.3 0-30' 11.3 0-30' 11.3 0-30' 12.3 13.7 $13.713.1 13.1 16' 22.6^{5}SO-60'$ 13.7 12.3 13.7 12.3 $30'$ 62.4^{5} SO-60' 13.7 11.3 FOR E-W WINDWARD WINDWARD WINDWARD 0' 0-30' 11.2 10-70' 11.2	$P = q_{\rm h}$	FC.CC		6-18)	: q=q2, G	= 0.803 (E-W)	
$\begin{array}{c} C_{Pf} = 0.8 \text{ WINDWARD} \\ \hline \\ FOR N-S WINWARD \\ \hline \\ C_{Pi} = \pm 0.18 \\ \hline \\ HETGHT P (PSf) \\ \hline \\ 0-30' 11.3 \\ 30-40' 12.3 \\ 13.7 \\ 40-50' 13.1 \\ 13.1 \\ 40' 22.6^{5} \\ 50-60' 13.7 \\ 12.3 \\ 50' 62.4^{5} \\$		là cht a	Cpi		G	(2-N) P18.0	
FOR N-S WINWARD Port N-S WINWARD Port N-S WINWARD Port N-S WINWARD Port N-S WINWARD Port N-S WINWARD Port S + 0.18 Port S					Cps = 0.5	B WINDWARD	
$C_{pi} = \pm 0.18$ $H_{ETGHT} P(psf)$ $0-30' 11.3$ $30-90' 12.3$ $13.7 50' 29.1k$ $40-50' 13.1 13.1 10' 22.6k$ $50-60' 13.7 12.3 30' 62.4k$ $50-60' 13.7 12.3 30' 62.4k$ $60-70' 14.4$ 11.3 $For E-W WINDWARD$ $WINDWARD$ $WINDWARD$ $0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0$	FOR N-S	WINWAR	D		-01	5 LEEWARD	
HETGHT P (psf) 0-30' 11.3 30-90' 12.3 13.1 13.7 40-50' 13.1 13.1 10' 22.6 23.4 50-60' 13.7 13.7 12.3 30' 62.4 50-60' 13.7 13.7 12.3 30' 62.4 60-70' 14.4 11.3 0' 60-70' 14.4 11.3 0' 60-70' 14.4 11.3 0' 60-70' 14.7 12.1 0' 40-50' 12.1 40-50' 12.9 50-60' 13.6 13.6 13.6 50' 24.5* 60-70' 14.2 12.7 40' 29.5* 108.3* 108.3* 108.3* 12.1 30' 90' 33.2* 12.1 30' 90' 29.5*	25	3. 74	4.		Cpi=±0	,18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HEIGHT	P (ps-	()				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-30'	11.3			60'	-25.2K - 7.6	
40-50' 13.1 13.1 12.3 30' 22.6* $50-60'$ 13.7 12.3 30' 62.4* 33.9' $60-70'$ 14.4 11.3 30' 62.4* 33.9' $For E-W$ WINDWARD 0' 0' 0' 0' $WINDWARD$ 0' 0' 0' 0' 0' $WINDWARD$ 0' 0' 0' 0' 0' $0-30'$ 11.2 ToTAL Force = 134.3+83.9 = 218.2 K (M-S $30-90'$ 12.1 0' 35.2* 7.4 $90-50'$ 12.9 60' 35.2* 7.4 $90-50'$ 13.6 13.6 50' 31.5* 108.3* $90-70'$ 14.2 12.7 90' 29.5* 108.3* 11.2 0' 29.5* 108.3* 108.3* 11.2 0' 30' 82.0* 108.3* 11.2 0' 29.5* 108.3* 108.3* 11.2 0' 108.3* 108.3* 108.3*	30-90'	12.3		13.	7 50'	24.14	
SO-60' 13,7 12.3 30' 62.4^{k} 33.9^{i} GO-70' 14.4 11.3 0' 0' 0' FOR E-W WITNDWARD 0' 0' 0' 0' WINDWARD 0' 0' 0' 0' 0-30' 11,2 TOTAL FORCE = 134.3+83.9 = 218.2 K (M-S 30-90' 12.1 10' 10' 90-50' 12.9 60' 33.2 K 7.4 90-50' 13.6 13.6 so' 29.5 K 10' 90-70' 14.2 12.9 90' 29.5 K 10' 90' 29.5 K 10'' 10''' 10'''' 90' 29.5 K 10'''' 10'''' 10''''''' 90' 29.5 K 10''''' 10''''''''''''''''''''''''''''''''''''	40-50'	13.1		13.	40'	22.64	
60-70' 19.4 II.3 0' FOR E-W WINDWARD $0'$ $WINDWARD$ $WINDWARD$ $0-30'$ II.2 $00'$ $38,2*$ $00'$ $38,2*$ $00'$ $38,2*$ $100'$ $29.5*$ $10''$ $10'''$ 11.2 $0''''''''''''''''''''''''''''''''''''$	50-60'	13.7		12.3	3 30'	62.4*	> 83.9
H.3 O' FOR E-W WINDWARD WINDWARD WINDWARD WINDWARD FORCE = 134.3* LEEWARD FORCE = 83.9* HETGHT P (PSF) O-30' II.2 JO-30' II.2 JO-30' II.2 JOTAL FORCE = 134.3+83.9 = 218.2* (M-S 30-40' IZ.1 40-50' IZ.9 50-60' I3.6 I3.6 I3.6 50' 29.5* I2.1 30' 30' 29.5* I2.1 30' 30' 29.5* I2.1 30' 30' 29.5* I2.1 30' 30' 29.5* I08.3* I08.3* I1.2 0' WINDWARD FORCE = 176.2 LEEWARD FORCE = 108.3*	60-70	14.4					
FOR E-W WITNOWARD WITNOWARD 0-30' II.Z 30-90' IZ.I 40-50' IZ.9 60-70' IZ.2 11.2 12.1 40-50' IZ.9 12.1 12.2 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 10.5 12.5 10			and the second	11.3			
WINDWARD FORCE = 134.3 LEEWARD FORCE = 83.9 L HEIGHT P (psf) 0-30' 11.2 30-40' 12.1 40-50' 12.9 50-60' 13.6 13.6 13.6 14.2 12.9 40' 29.5* 60-70' 14.2 12.1 12.9 40' 29.5* 60-70' 14.2 12.1 30' 90' 29.5* 12.1 108.3* 12.1 108.3* 12.7 10' 14.2 12.7 12.1 30' 90' 29.5* 108.3* 108.3* 11.2 0' 12.1 30' 90' 92.0* 11.2 0' 11.2 0' 11.2 0' 11.2 0' 11.2 0' 12.1 30' 12.2 10' 12.4 10' 12.7 10'	FOR E-W	WINDW	ARD		, o'		
HETGHT P (psf) 0-30' 11.2 30-40' 12.1 40-50' 12.9 60-70' 13.6 14.2 12.9 40' 29.5* 108.3K 11.2 11.2 12.1 40-50' 12.9 40' 13.6 13.6 12.7 40' 29.5* 108.3K 11.2 11.2 11.2 12.1 30' 29.5* 108.3K 11.2 11.2 11.2 12.1 30' 82.0K 11.2 0' 11.2 0' 11.2 0' 11.2 0' 11.2 0' 11.2 0' 11.2 0' 12.5 <		-		W	INDWARD FORC	E= 134.3 LEEWARD	FORCE = 83.9"
$0-30'$ 11. Z Total Force = 134.3+83.9 = 218.2 k (M-5) $30-40'$ 12.1 $40-50'$ 12.9 $50-60'$ 13.6 $50-60'$ 13.6 $60-70'$ 14.2 12.1 $40'$ 29.5^{k} 12.1 108.3^{k} 12.1 12.7 $40'$ 29.5^{k} 12.1 $30'$ 82.0^{k} 108.3^{k} 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ 12.1 $30'$ 82.0^{k} 108.3^{k} 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ $0'$ $0'$ 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ 11.2 $0'$ 11.2 $0'$	HEIGHT	P(psf)				
30-40' 17.1 $40-50' 17.9 60' 38.2* 7.4$ $50-60' 13.6 13.6 50' 31.5* 108.3* 108.3*$ $60-70' 14.2 12.9 40' 29.5* 108.3*$	0-30'	11.2			TOTAL FORC	E= 134.3+83.9=	218.2 K (N-S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30-40'	12.1		1			
50-60' 13.6 13.6 50' 31.5K 60-70' 14.2 12.9 40' 29.5K 12.1 30' 82.0K 11.2 0' WINDWARD FORCE = 176.2 LEEWARD FORCE = 108.3K	40-50	12,9	6	0	33.2*	-7.4	
60-70' 19.2 12.9 40' 29.5x 12.1 30' 32.0k 11.2 0' WINDWARD FORCE = 176.7 LEEWARD FORCE = 108.3k	50-60	13.6	13.6	50'	31.5%		
12.1 30' 32.0k 11.2 0' WINDWARD FORCE = 176.2 LEEWARD FORCE = 108.3k	60-70'	19.2	12.7	90'	29.5*		108 2K
11.2 0' WINDWARD FORCE = 176.7 LEEWARD FORCE = 108.3K			12.1	30'	> 82,0K	1	
11.2 0' WINDWARD FORCE = 176.2 LEEWARD FORCE = 108.3"							
WINDWARD FORCE = 176.2 LEEWARD FORCE = 108.3K			11.2			1	
WINDWARD FORCE = 176.7 LEEWARD FORCE = 108.3				0			- LIG OK
		W	INDWARD	FORC	E= 176.2	LEEWARD FORCE	108.37
				+ + -			(=,,\]

Seismic Load Calculation

Story Forces

Mich Tech	AEL F	OPPLE	1				
5	EISMI	C LOA	D DIS	TRIBUTIO	sN.		
LA	TERAL	- FORC	ε Ατ Ε	ACH LEV	EL:		
	Fx = (Cvx·V	WHE	re Cvx =	$\frac{\omega_{x}h_{x}^{k}}{\sum_{i=1}^{k}\omega_{i}h_{i}^{k}}$	K=1.0	For TCO.55
	DEA	D LOAD LEVEL 2	By LEVI	EL: 13 ^K			
		LEVEL 3 LEVEL 4	: 50*				
	n	Roof	= 4210	3 K			
	W.	N: h K= G	71/300	+ 5641(285	+ 5689(125)	+ 4 2/0(56)
LEVEL 2	Cv2 =	6213(14.5) =	0.127			
	F 2 =	0.127	(1627)=	206 K			
LEVEL 3	CV3 2	5041	28.5) = 0	.202			
	F3=	0.202((627) 3	329*			
LEVEL 4	Cvq ·	5689(1	2.5) = 6	390		Roof	539K
Pone LEWEL	Cupe	4716/5	() = 5	221		3 4	3294
NOOFICEVEL	F	7//300	627)=	5394			

Shear Wall Layout

Equivalent Thickness

East - West Walls

Shear Wall:	Ау		
Panel Length:	VV =	32	ft.
		Volun	ne
Tier	Height (ft.)	(yd. ³)
Parapet	4.0	3.31	
Roof	14.0	12.29	9
4	14.0	11.9	C
3	14.0	10.13	3
2	14.0	10.6	0
Total Volume		48.23	
		1302	ft. ³
Total Wall Are	a	1920	ft. ²
Equivalent Th	ickness	0.678	ft.
		8.139	in.
Shear Wall:	Ву		
Shear Wall: Panel Length:	By W =	30	ft.
Shear Wall: Panel Length:	By ₩ =	30 Volun	ft. 1e
Shear Wall: Panel Length: Tier	By W = Height (ft.)	30 Volum (yd. ³	ft. ne)
Shear Wall: Panel Length: Tier Parapet	By W = Height (ft.) 4.0	30 Volum (yd. ³ 3.12	ft. ne)
Shear Wall: Panel Length: Tier Parapet Roof	By W = Height (ft.) 4.0 14.0	30 Volum (yd. ³ 3.12 11.09	ft. ne) 2
Shear Wall: Panel Length: Tier Parapet Roof 4	By W = Height (ft.) 4.0 14.0 14.0	30 Volum (yd. ³ 3.12 11.09 11.10	ft. ne) 2 9 0
Shear Wall: Panel Length: Tier Parapet Roof 4 3	By W = <u>Height (ft.)</u> 4.0 14.0 14.0 14.0	30 Volun (yd. ³ 3.12 11.09 11.10 9.36	ft. ne) 2 9 0
Shear Wall: Panel Length: Tier Parapet Roof 4 3 2	By W = Height (ft.) 4.0 14.0 14.0 14.0 14.0	30 Volum (yd. ³ 3.12 11.09 11.10 9.36 9.79	ft. ne) 2 9 0
Shear Wall: Panel Length: Tier Parapet Roof 4 3 2 Total Volume	By W = Height (ft.) 4.0 14.0 14.0 14.0 14.0	30 Volun (yd. ³ 3.12 11.09 11.10 9.36 9.79 44.46	ft. ne) 2 9 0 5
Shear Wall: Panel Length: Tier Parapet Roof 4 3 2 Total Volume	By W = <u>Height (ft.)</u> 4.0 14.0 14.0 14.0 14.0	30 Volum (yd. ³ 3.12 11.09 11.10 9.36 9.79 44.46 1200	ft. he) 2 9 0 5 1 ft. ³
Shear Wall: Panel Length: Tier Parapet Roof 4 3 2 Total Volume Total Wall Are	By W = Height (ft.) 4.0 14.0 14.0 14.0 14.0	30 Volum (yd. ³ 3.12 11.09 11.10 9.36 9.79 44.46 1200 1800	ft.) 2 9 0 ft. ³ ft. ²
Shear Wall: Panel Length: Tier Parapet Roof 4 3 2 Total Volume Total Wall Are Equivalent Th	By W = Height (ft.) 4.0 14.0 14.0 14.0 14.0	30 Volum (yd. ³ 3.12 11.09 11.10 9.36 9.79 44.46 1200 1800 0.667	ft. he) 29 0 ft. ³ ft. ² ft.

North - South Walls

Shear Wall:	Ax		
Panel Length:	. W =	32	ft.
		Volum	ne
Tier	Height (ft.)	(yd. ³)
Parapet	4.0	3.31	
Roof	14.0	12.29	9
4	14.0	11.90	C
3	14.0	10.13	3
2	14.0	10.60	C
Total Volume		48.23	
		1302	ft. ³
Total Wall Are	1920	ft. ²	
Equivalent Th	0.678	ft.	
		8.139	in.

Shear Wall:	Bx		
Panel Length:	: W =	30	ft.
		Volun	ne
Tier	Height (ft.)	(yd. ³)
Parapet	4.0	3.12	2
Roof	14.0	11.0	9
4	14.0	11.1	0
3	14.0	9.36	;
2	14.0	9.79)
Total Volume		44.46	
		1200	ft. ³
Total Wall Are	1800	ft. ²	
Equivalent Th	0.667	ft.	
		8.003	in.

Shear Wall:	Су		
Panel Length:	VV =	28.33	ft.
		Volum	ne
Tier	Height (ft.)	(yd. ³)
Parapet	4.0	3.67	,
Roof	14.0	14.00	0
4	14.0	14.0	0
3	14.0	14.00	0
2	14.0	14.60	0
Total Volume		60.27	
		1627	ft. ³
Total Wall Are	a	1700	ft. ²
Equivalent Th	0.957	ft.	
		11.49	in.

Shear Wall:	Cx		
Panel Length:	: W =	28.33	ft.
		Volun	ne
Tier	Height (ft.)	(yd. ³)
Parapet	4.0	3.67	,
Roof	14.0	14.0	0
4	14.0	14.0	0
3	14.0	14.0	0
2	14.0	14.6	0
Total Volume		60.27	
		1627	ft. ³
Total Wall Are	1700	ft. ²	
Equivalent Th	0.957	ft.	
		11.49	in.

Shear Wall:	Dy		
Panel Length:	VV =	21	ft.
		Volun	ne
Tier	Height (ft.)	(yd. ³)
Parapet	4.0	2.22	2
Roof	14.0	8.14	
4	14.0	8.01	
3	14.0	6.80)
2	14.0	7.39)
Total Volume		32.56	
		879.1	ft. ³
Total Wall Are	1260	ft. ²	
Equivalent Th	0.698	ft.	
		8.373	in.

Shear Wall:	Dx		
Panel Length:	: W =	25.67	ft.
		Volun	ne
Tier	Height (ft.)	(yd. ³)
Parapet	4.0	2.69)
Roof	14.0	9.18	5
4	14.0	8.94	ŀ
3	14.0	7.50)
2	14.0	6.85	5
Total Volume		35.16	
		949.3	ft. ³
Total Wall Are	1540	ft. ²	
Equivalent Th	0.616	ft.	
		7.396	in.

Shear Wall:	Ey				
Panel Length:	VV =	20.75	ft.		
		Volun	ne		
Tier	Height (ft.)	(yd. ³)		
Parapet	13.0	8.28	5		
Roof	14.0	9.38	;		
4	14.0	9.38			
3	14.0	9.38			
2	14.0	9.78			
Total Volume		46.20			
		1247	ft. ³		
Total Wall Are	1432	ft. ²			
Equivalent Th	Equivalent Thickness				
	10.45	in.			

Shear Wall:	Ex		
Panel Length:	VV =	30.75	ft.
		Volun	ne
Tier	Height (ft.)	(yd. ³)
Parapet	4.0	3.22	2
Roof	14.0	11.0	9
4	14.0	11.51	
3	14.0	9.73	
2	14.0	10.16	
Total Volume		45.71	
	1234	ft. ³	
Total Wall Are	1845	ft. ²	
Equivalent Th	ickness	0.669	ft.
	8.027	in.	

Shear Wall:	Fx		
Panel Length:	W =	16	ft.
		Volun	ne
Tier	Height (ft.)	(yd. ³)
Parapet	13.0	3.45	5
Roof	14.0	8.53	3
4	14.0	7.78	3
3	14.0	7.78	
2	14.0	7.85	
Total Volume		35.39	
	955.5	ft. ³	
Total Wall Are	1104	ft. ²	
Equivalent Th	ickness	0.866	ft.
		10.39	in.

North - South Walls

Shear	# of Walls	Length (in.)	Equivalent	Height (in.)	Moment of	Modulous of	Stiffness (k/in.)
Wall			Thickness (in.)		Inertia (in. ⁴)	Elasticity (ksi)	
		h	b	Z	1	Ξ	k
Ax	1	384	8.136	672	38390465	4286	6507
Bx	7	360	8.004	672	31119552	4286	5274
Cx	1	340	11.496	672	37653232	4286	6382
Dx	2	308	7.392	672	17998357	4286	3050
Ex	1	308	8.028	672	19546917	4286	3313
Fx	2	192	10.392	828	6129451	4286	555
						Total =	60332

Shear	# of Walls	Length (in.)	Equivalent	Height (in.)	Moment of	Modulous of	Stiffness (k/in.)
Wall			Thickness (in.)		Inertia (in.⁴)	Elasticity (ksi)	
		h	b	Z	Ţ	E	k
Ay	3	384	8.136	672	38390465	4286	6507
By	3	360	8.004	672	31119552	4286	5274
Су	1	340	11.496	672	37653232	4286	6382
Dy	1	252	8.376	672	11170100	4286	1893
Ey	1	249	10.452	828	13446715	4286	1218
						Total =	44835

North - South Walls

Shear Wall:	A _x		Shear Wall:	Ay	
Rigidity:	6507		Rigidity:	6507	
l otal	60000		l otal Digidite d	44025.0	
Rigidity	60332	Shoor	Rigially.	44835.0	Shoor
	Seismic	Distribution	ا مربو ا	Seismic	Distribution
Level	Base	Distribution	Level	Base	Distribution
	Shear	for Each Level		Shear	for Each Level
R	539	58.1	R	539	78.2
4	553	59.6	4	553	80.3
3	329	35.5	3	329	47.7
2	206	22.2	2	206	29.9
	Total	175.5		Total	236.1
Shear Wall:	B _x		Shear Wall:	B _v	
Rigidity: Total	5274		Rigidity: Total	5274	
Rigidity:	60332		Riaidity:	44835.0	
0		Shear	0 * 5		Shear
Level	Seismic Base	Distribution	Level	Seismic Base	Distribution
	Shear	for Each Level		Shear	for Each Level
R	539	47.1	R	539	63.4
4	553	48.3	4	553	65.1
3	329	28.8	3	329	38.7
2	206	18.0	2	206	24.2
	Total	142.2		Total	191.4
Shear Wall:	C.		Shear Wall:	C,	
Rigidity:	6382		Rigidity:	6382	
Rigidity.	60332		Rigidity.	44835.0	
r (igiaity)	00002	Shear	r tigitaity.	11000.0	Shear
Level	Seismic	Distribution	Level	Seismic	Distribution
	Base			Base	
	Shear	for Each Level		Shear	for Each Level
R	539	57.0	R	539	76.7
4	553	58.5	4	553	78.7
3	329	34.8	3	329	46.8
2	206	21.8	2	206	29.3
	Total	172.1		Total	231.6

Shear Wall: Total	D _x		Shear Wall: Total	Dy	
Rigidity:	60332	Chase	Rigidity:	44835.0	Chaan
	Soismia	Snear		Soismic	Snear
Levei	Base	Distribution	Levei	Base	Distribution
	Shear	for Each Level		Shear	for Each Level
R	539	27.2	R	539	22.8
4	553	28.0	4	553	23.3
3	329	16.6	3	329	13.9
2	206	10.4	2	206	8.7
	Total	82.3		Total	68.7
Shear Wall:	Ex		Shear Wall:	E _v	
Rigidity: Total	3313		Rigidity: Total	1218	
Rigidity:	60332		Rigidity:	44835.0	
		Shear			Shear
Level	Seismic Base	Distribution	Level	Seismic Base	Distribution
	Shear	for Each Level		Shear	for Each Level
R	539	29.6	R	539	14.6
4	553	30.4	4	553	15.0
3	329	18.1	3	329	8.9
2	206	11.3	2	206	5.6
	Total	89.3		Total	44.2
Shear Wall:	F _x				
Rigidity: Total	555				
Rigidity:	60332				
		Shear			
Level	Seismic Base	Distribution			
	Shear	for Each Level			
R	539	5.0			
4	553	5.1			
3	329	3.0			
2	206	1.9			
	Total	15.0			

Center of Rigidity

	No	rth - South	Walls	
Shear	# of	Distance	Stiffness	
Wall	Walls	(in.)	(k/in.)	Σk*d
		d	k	
A _{x6}	1	1086	9507	10324602
B _{x5}	2	1086	5274	11455128
B _{x1}	5	2208	5274	58224960
C _{x7}	1	120	6382	765840
D _{x8}	2	0	3050	0
Ex_4	1	1086	3313	3597918
F _{x2}	1	1590	555	882450
F _{x3}	1	1329	555	737595
		Total =	60332	85988493
Center of	Rigidity	Y =	1425.3	in.
		Y =	118.8	ft.

Shear Wall	# of Walls	Distance (in.)	Stiffness (k/in.)	Σk*d
		d	k	
A _{y1}	2	0	6507	0
B _{y2}	3	0	5274	0
E _{y3}	1	954	1218	1161972
D _{y4}	1	1125	1893	2129625
A _{y5}	1	1125	6507	7320375
C _{y6}	1	2808	6382	17920656
		Total =	27781	28532628
Center of Rigidity		X =	1027.1	in.
	-	X =	85.6	ft.

Torsional Moment of Inertia

		North - 3	South Walls		
Shear Wall	# of Walls	Stiffness	Dist. From Wall		
		(kip/in.)	to C.O.R. (ft.)		
		k	d	d^2	Σk*d ²
A _{x6}	1	9507	28	784.0	7453488
B _{x5}	2	5274	28	784.0	8269632
B _{x1}	5	5274	64.25	4128.1	108857008
C _{x7}	1	6382	108.5	11772.3	75130500
D _{x8}	2	3050	118.5	14042.3	85657725
Ex4	1	3313	28	784.0	2597392
F _{x2}	1	555	13.5	182.3	101149
F _{x3}	1	555	8.25	68.1	37775
	Torsional	Moment of	Inertia (kip-ft.2/in.):	J =	288104668

East - Wast Walls							
Shear Wall	# of Walls	Stiffness	Dist. From Wall				
		(kip/in.)	to C.O.R. (ft.)				
		k	d	d ²	Σk*d ²		
A _{y1}	2	6507	85.6	7327.4	95358263		
$B_{\gamma 2}$	3	5274	85.6	7327.4	115933490		
E _{v3}	1	1218	5.75	33.1	40270		
D_{y4}	1	1893	6.5	42.3	79979		
A_{y5}	1	6507	6.5	42.3	274921		
C _{v6}	1	6382	146.75	21535.6	137439960		
Torsional Moment of Inertia (kip-ft.2/in.):					349126883		

[Hopple-Tech Assignment 3]

North - South Walls

Shear Wall:	Bx ₁		Shear Wall:	A _{v1}	
Eccentricity:	27	ft.	Eccentricity:	35.5	ft.
Dist. To C.O.R.	64.3	ft.	Dist. To C.O.R.	85.5	ft.
Stiffness:	5274	(kip/in.)	Stiffness:	6507	(kip/in.)
Torsional		,	Torsional		,
Moment	349126883	(kip-ft. ² /in.)	Moment	349126883	(kip-ft. ² /in.)
of Inertia	Quinnia	Tanaian al Ohaan	of Inertia	Quinnia	
	Seismic	for		Seismic	for
Level	Shear	101	Levei	Shear	101
	(kins)	Each Level (kins)		(kins)	Each Level (kins)
R	539	14 1	R	539	30.5
4	553	14.5	4	553	31.3
3	329	8.6	3	329	18.6
2	206	5.4	2	206	11.7
L	200	0.4	<i>L</i>	200	
Shear Wall:	F _{x2}		Shear Wall:	B _{v2}	
Eccentricity:	27	ft.	Eccentricity:	35.5	ft.
Dist. To C.O.R.	13.5	ft.	Dist. To C.O.R.	85.5	ft.
Stiffness:	555	(kip/in.)	Stiffness:	5274	(kip/in.)
Torsional		,	Torsional		
Moment	349126883	(kip-ft. ² /in.)	Moment	349126883	(kip-ft. ² /in.)
of Inertia			of Inertia		
	Seismic	Torsional Shear		Seismic	Torsional Shear
Level	Base	for	Level	Base	for
	Shear	Feeblevel (kine)		Shear	Each Loval (king)
P	(KIPS)	Each Level (kips)	P	(KIPS)	Each Level (kips)
R	539	0.3	R	539	24.7
4	553	0.3	4	553	25.4
3	329	0.2	3	329	15.1
2	206	0.1	2	206	9.4
Shear Wall:	F _{∗3}		Shear Wall:	Eva	
Eccentricity:	27	ft.	Eccentricity:	35.5	ft.
Dist. To C.O.R.	8.3	ft.	Dist. To C.O.R.	5.8	ft.
Stiffness:	555	(kip/in.)	Stiffness:	1218	(kip/in.)
Torsional			Torsional		
Moment	349126883	(kip-ft. ² /in.)	Moment	349126883	(kip-ft. ² /in.)
of Inertia			of Inertia		
	Seismic	Torsional Shear		Seismic	Torsional Shear
Level	Base	for	Level	Base	for
	Shear	–		Shear	–
-	(KIPS)	Each Level (kips)	-	(KIPS)	Each Level (kips)
R	539	0.2	R	539	0.4
4	553	0.2	4	553	0.4
3	329	0.1	3	329	0.2
2	206	0.1	2	206	0.1

Shear Wall:	E _{x4}		Shear Wall:	D _{v4}	ft.
Dist. To C.O.R.	28.0	ft.	Dist. To C.O.R.	6.5	ft.
Stiffness:	3313	(kip/in.)	Stiffness:	1893	(kip/in.)
Torsional			Torsional		· · /
Moment of Inertia	349126883	(kip-ft. ² /in.)	Moment	349126883	(kip-ft. ² /in.)
	Seismic	Torsional Shear		Seismic	Torsional Shear
l evel	Base	for	level	Base	for
2010.	Shear		2010	Shear	101
	(kips)	Each Level (kips)		(kips)	Each Level (kips)
R	539	3.9	R	539	0.7
4	553	4.0	4	553	0.7
3	329	2.4	3	329	0.4
2	206	1.5	2	206	0.3
_					
Shear Wall:	B _{x5}		Shear Wall:	A _{y5}	
Eccentricity:	27	ft.	Eccentricity:	35.5	ft.
Dist. To C.O.R.	28.0	ft.	Dist. To C.O.R.	6.5	ft.
Stiffness:	5274	(kip/in.)	Stiffness:	6507	(kip/in.)
Torsional		^	Torsional		
Moment	349126883	(kip-ft. ² /in.)	Moment	349126883	(kip-ft. ² /in.)
of Inertia			of Inertia		
	Seismic	Torsional Shear		Seismic	Torsional Shear
Level	Base	for	Level	Base	for
	Shear			Shear	
Р	(KIPS)	Each Level (kips)	P	(KIPS)	Each Level (kips)
R	539	6.2	R	539	2.3
4	553	6.3	4	553	2.4
3	329	3.8	3	329	1.4
2	206	2.4	2	206	0.9
Shear Wall:	Ave		Shear Wall:	Cue	
Eccentricity:	27	ft	Eccentricity:	35.5	ft
Dist. To C.O.R.	28.0	ft.	Dist. To C.O.R.	146.8	ft.
Stiffness	6507	(kip/in)	Stiffness	6382	(kip/in)
Torsional	0001	(Torsional	0002	(100)
Moment	349126883	(kip-ft. ² /in.)	Moment	349126883	(kip-ft. ² /in.)
of Inertia			of Inertia		(1)
	Seismic	Torsional Shear		Seismic	Torsional Shear
Level	Base	for	Level	Base	for
	Shear			Shear	
	(kips)	Each Level (kips)		(kips)	Each Level (kips)
R	539	7.6	R	539	51.3
4	553	7.8	4	553	52.7
3	329	4.6	3	329	31.3
2	206	2.9	2	206	19.6

Shear Wall:	C _{x7}	
Eccentricity:	27	ft.
Dist. To C.O.R.	108.5	ft.
Stiffness:	6382	(kip/in.)
Torsional		· · /
Moment	349126883	(kip-ft. ² /in.)
of Inertia		
	Seismic	Torsional Shear
Level	Base	for
	Shear	
	(kips)	Each Level (kips)
R	539	28.9
4	553	29.6
3	329	17.6
2	206	11.0
Shear Wall:	D _{x8}	
Shear Wall: Eccentricity:	D _{x8} 27	ft.
Shear Wall: Eccentricity: Dist. To C.O.R.	D_{x8} 27 118.5	ft. ft.
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness:	D_{x8} 27 118.5 3050	ft. ft. (kip/in.)
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional	D_{x8} 27 118.5 3050	ft. ft. (kip/in.)
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment	D _{x8} 27 118.5 3050 349126883	ft. ft. (kip/in.) (kip-ft. ² /in.)
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment of Inertia	D _{x8} 27 118.5 3050 349126883	ft. ft. (kip/in.) (kip-ft. ² /in.)
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment of Inertia	D _{x8} 27 118.5 3050 349126883 Seismic	ft. ft. (kip/in.) (kip-ft. ² /in.) Torsional Shear
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment of Inertia Level	D _{x8} 27 118.5 3050 349126883 Seismic Base	ft. ft. (kip/in.) (kip-ft. ² /in.) Torsional Shear for
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment of Inertia Level	D _{x8} 27 118.5 3050 349126883 Seismic Base Shear	ft. ft. (kip/in.) (kip-ft.²/in.) Torsional Shear for
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment of Inertia Level	D _{x8} 27 118.5 3050 349126883 Seismic Base Shear (kips)	ft. ft. (kip/in.) (kip-ft.²/in.) Torsional Shear for Each Level (kips)
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment of Inertia Level R	D _{x8} 27 118.5 3050 349126883 Seismic Base Shear (kips) 539	ft. ft. (kip/in.) (kip-ft.²/in.) Torsional Shear for Each Level (kips) 15.1
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment of Inertia Level R 4	D _{x8} 27 118.5 3050 349126883 Seismic Base Shear (kips) 539 553	ft. ft. (kip/in.) (kip-ft. ² /in.) Torsional Shear for Each Level (kips) 15.1 15.5
Shear Wall: Eccentricity: Dist. To C.O.R. Stiffness: Torsional Moment of Inertia Level R 4 3	D _{x8} 27 118.5 3050 349126883 Seismic Base Shear (kips) 539 553 329	ft. ft. (kip/in.) (kip-ft. ² /in.) Torsional Shear for Each Level (kips) 15.1 15.5 9.2

Nort	h - So	uth Wall	s		Eas	st - We	st Walls	5
Shear Wall:	B _{x1}			Sh W	iear 'all:	A _{y1}		
Level	Direct	Torsional	Total	Le	evel	Direct	Torsional	Total
	Shear	Shear	Shear			Shear	Shear	Shear
Roof	47.1	14.1	61.2	R	oof	78.0	30.5	108.5
4 th floor	48.3	14.5	62.8	4 th ·	floor	80.3	31.3	111.6
3 rd floor	28.8	8.6	37.4	3 rd	floor	47.7	18.6	66.3
2 nd floor	18.8	5.4	24.2	2 nd	floor	29.9	11.7	41.6
Total	143.0	42.6	185.6	Тс	otal	235.9	92.1	328.0
Shear Wall:	F _{x2}			Sh W	ear 'all:	B _{y2}		
Level	Direct	Torsional	Total	Le	evel	Direct	Torsional	Total
	Shear	Shear	Shear			Shear	Shear	Shear
Roof	5.0	0.3	5.3	R	oof	63.4	24.7	88.1
4 th floor	5.1	0.3	5.4	4 th .	floor	65.1	25.4	90.5
3 rd floor	3.0	0.2	3.2	3 rd	floor	38.7	15.1	53.8
2 nd floor	1.9	0.1	2.0	2 nd	floor	24.2	9.4	33.6
Total	15.0	0.9	15.9	Тс	otal	191.4	74.6	266.0
Shear Wall:	F _{x3}			Sh W	ear all:	E _{y3}		
Level	Direct	Torsional	Total	Le	evel	Direct	Torsional	Total
	Shear	Shear	Shear			Shear	Shear	Shear
Roof	5.0	0.2	5.2	R	oof	14.6	0.4	15.0
4 th floor	5.1	0.2	5.3	4 th ·	floor	15.0	0.4	15.4
3 rd floor	3.0	0.1	3.1	3 rd	floor	8.9	0.2	9.1
2 nd floor	1.9	0.1	2.0	2 nd	floor	5.6	0.1	5.7
Total	15.0	0.6	15.6	Тс	otal	44.1	1.1	45.2
Shear Wall:	E _{x4}			Sh W	ear all:	D _{y4}		
Level	Direct	Torsional	Total	Le	evel	Direct	Torsional	Total
	Shear	Shear	Shear			Shear	Shear	Shear
Roof	29.6	3.9	33.5	R	oof	22.8	0.7	23.5
4 th floor	30.4	4.0	34.4	4 th .	floor	23.3	0.7	24.0
3 rd floor	18.1	2.4	20.5	3 rd	floor	13.9	0.4	14.3
2 nd floor	11.3	1.5	12.8	2 nd	floor	8.7	0.3	9.0
Total	89.4	11.8	101.2	Тс	otal	68.7	2.1	70.8

Shear Wall:	B _{x5}			Shear Wall:	A _{y5}		
Level	Direct	Torsional	Total	Level	Direct	Torsional	Total
	Shear	Shear	Shear		Shear	Shear	Shear
Roof	47.1	6.2	53.3	Roof	78.0	2.3	80.3
4 th floor	48.3	6.3	54.6	4 th floor	80.3	2.4	82.7
3 rd floor	28.8	3.8	32.6	3 rd floor	47.7	1.4	49.1
2 nd floor	18.8	2.4	21.2	2 nd floor	29.9	0.9	30.8
Total	143.0	18.7	161.7	Total	235.9	7.0	242.9
Shear Wall:	A _{x6}			Shear Wall:	C _{y6}		
Level	Direct	Torsional	Total	Level	Direct	Torsional	Total
	Shear	Shear	Shear		Shear	Shear	Shear
Roof	58.1	7.6	65.7	Roof	76.7	51.3	128.0
4 th floor	59.6	7.8	67.4	4 th floor	78.7	52.7	131.4
3 rd floor	35.5	4.6	40.1	3 rd floor	46.8	31.3	78.1
2 nd floor	22.2	2.9	25.1	2 nd floor	29.3	19.6	48.9
Total	175.4	22.9	198.3	Total	231.5	154.9	386.4
Shear Wall:	C _{x7}						
Level	Direct	Torsional	Total				
	Shear	Shear	Shear				
Roof	57.0	28.9	85.9				
4 th floor	58.5	29.6	88.1				
3 rd floor	34.8	17.6	52.4				
2 nd floor	21.8	11.0	32.8				
Total	172.1	87.1	259.2				
Shear Wall:	D _{x8}						
Level	Direct	Torsional	Total				
	Shear	Shear	Shear				
Roof	27.2	15.1	42.3				
4 th floor	28.0	15.5	43.5				
3 rd floor	16.6	9.2	25.8				
2 nd floor	10.4	5.8	16.2				
Total	82.2	45.6	127.8				

Shear Wall Overturning

$$\begin{split} Mo &= 1.0^* \Sigma(F^*h) \\ Mr &= 0.859^* \Sigma(P^*D) \\ Tu &= (Mo - Mr) \ / \ C \\ As &= Tu \ / \\ 60 \end{split}$$

Fr —	P ₄	
F₄ —►	₽3 ₽	
F3 →	P2	h4 h3
F₂ —►	¥	h2 h1

Shear Wall:	Bx1				
Panel Width:		W =	30	ft.	
Panel Thickness: Moment		t =	8.003	in.	
Arm:		D =	15	ft.	D = W / 2
Coupled Moment Ar	m:	C =	28	ft.	C = W - 2'

Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Required Steel	Number of	Provided Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	61.2	117.5	3427.2	1514.0	68.3	1.14	2	2.00
4	42.0	62.8	117.5	6064.8	3028.0	108.5	1.81	2	2.00
3	28.0	37.4	117.5	7112.0	4542.0	91.8	1.53	2	2.00
2	14.0	24.2	117.5	7450.8	6056.0	49.8	0.83	1	1.00

Shear Wall:	Fx2				
Panel Width:		VV =	16	ft.	
Panel Thickness: Moment		t =	10.39	in.	
Arm:		D =	8	ft.	D = W / 2
Coupled Moment Ar	m:	C =	14	ft.	C = W - 2'

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	5.3	63.4	296.8	435.7	-9.9	N/A	N/A	N/A
4	42.0	5.4	63.4	523.6	871.4	-24.8	N/A	N/A	N/A
3	28.0	3.2	63.4	613.2	1307.1	-49.6	N/A	N/A	N/A
2	14.0	2.0	63.4	641.2	1742.7	-78.7	N/A	N/A	N/A

Shear Wall:	Fx3				
Panel Width:		VV =	16	ft.	
Panel Thickness: Moment		t =	10.39	in.	
Arm:		D =	8	ft.	D = W / 2
Coupled Moment Ar	m:	C =	14	ft.	C = W - 2'

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu	0		As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	5.2	49.6	291.2	340.9	-3.5	N/A	N/A	N/A
4	42.0	5.3	49.6	513.8	681.7	-12.0	N/A	N/A	N/A
3	28.0	3.1	49.6	600.6	1022.6	-30.1	N/A	N/A	N/A

[Hopple-Tech Assignment 3]

2	14 0	20	49.6	628.6	1363.4	-52 5	NI/A	Ν/Δ	NI/A
2	14.0	2.0	45.0	020.0	1505.4	-52.5	IWA	IN/A	IN/A

Shear Wall:	Ex4				
Panel Width:		VV =	30.75	ft.	
Panel Thickness: Moment		t =	8.027	in.	
Arm:		D =	15.375	ft.	D = W / 2
Coupled Moment Arr	m:	C =	28.75	ft.	C = W - 2'

Tier	Height	Seismic	Dead P	Overturning	Resisting	Uplift Tu	Required Steel	Number of	Provided Steel As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	33.5	131.2	1876.0	1732.8	5.0	0.08	1	1.00
4	42.0	34.4	131.2	3320.8	3465.5	-5.0	N/A	N/A	N/A
3	28.0	20.5	131.2	3894.8	5198.3	-45.3	N/A	N/A	N/A
2	14.0	12.8	131.2	4074.0	6931.1	-99.4	N/A	N/A	N/A

Shear Wall:	Bx5				
Panel Width:		W =	30	ft.	
Panel Thickness: Moment		t =	8.003	in.	
Arm:		D =	15	ft.	D = W / 2
Coupled Moment Ar	m:	C =	28	ft.	C = W - 2'

Tier	Height	Seismic	Dead P	Overturning	Resisting	Uplift Tu	Required Steel	Number of	Provided Steel As.provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	53.3	127.8	2984.8	1646.7	47.8	0.80	1	1.00
4	42.0	54.6	127.8	5278.0	3293.4	70.9	1.18	2	2.00
3	28.0	32.6	127.8	6190.8	4940.1	44.7	0.74	1	1.00
2	14.0	21.2	127.8	6487.6	6586.8	-3.5	N/A	N/A	N/A

Shear Wall:	Ax6				
Panel Width:		W =	32	ft.	
Panel Thickness: Moment		t =	8.139	in.	
Arm:		D =	16	ft.	D = W / 2
Coupled Moment A	rm:	C =	30	ft.	C = W - 2'

Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Required Steel	Number of	Provided Steel
	h (ft)	F (kips)	P (kips)	Mo (ft-k)	Mr (ft-k)	Tu (kips)	As reg (in ²)	#9 Bars	As,provd (in ²)
		. ((((, io,i oq ()		()
Roof	56.0	65.7	28.7	3679.2	394.5	109.5	1.82	2	2.00
4	42.0	67.4	28.7	6510.0	788.9	190.7	3.18	4	4.00
3	28.0	40.1	28.7	7632.8	1183.4	215.0	3.58	4	4.00
2	14.0	25.1	28.7	7984.2	1577.8	213.5	3.56	4	4.00

Shear Wall:	Cx7				
Panel Width:		W =	28.33	ft.	
Panel Thickness: Moment		t =	11.49	in.	
Arm:		D =	14.165	ft.	D = W / 2
Coupled Moment Ar	m:	C =	26.33	ft.	C = W - 2

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	63.2	116.2	3539.2	1413.9	80.7	1.35	2	2.00
4	42.0	64.9	116.2	6265.0	2827.8	130.5	2.18	3	3.00
3	28.0	38.6	116.2	7345.8	4241.7	117.9	1.96	2	2.00
2	14.0	24.2	116.2	7684.6	5655.6	77.1	1.28	2	2.00

Shear Wall:	Dx8				
Panel Width:		VV =	25.67	ft.	
Panel Thickness: Moment		t =	7.396	in.	
Arm:		D =	12.835	ft.	D = W / 2
Coupled Moment Ar	m:	C =	23.67	ft.	C = W - 2'

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	42.3	0.0	2368.8	0.0	100.1	1.67	2	2.00
4	42.0	43.5	0.0	4195.8	0.0	177.3	2.95	3	3.00
3	28.0	25.8	0.0	4918.2	0.0	207.8	3.46	4	4.00
2	14.0	16.2	0.0	5145.0	0.0	217.4	3.62	4	4.00

Shear Wall:	Ay1				
Panel Width:		W =	32	ft.	
Panel Thickness: Moment		t =	8.139	in.	
Arm:		D =	16	ft.	D = W / 2
Coupled Moment A	rm:	C =	30	ft.	C = W - 2'

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	108.5	129.7	6076.0	1782.6	143.1	2.39	3	3.00
4	42.0	111.6	129.7	10763.2	3565.2	239.9	4.00	4	4.00
3	28.0	66.3	129.7	12619.6	5347.8	242.4	4.04	5	5.00
2	14.0	41.6	129.7	13202.0	7130.4	202.4	3.37	4	4.00

Shear Wall:	By2				
Panel Width:		W =	30	ft.	
Panel Thickness: Moment		t =	8.003	in.	
Arm:		D =	15	ft.	D = W / 2
Coupled Moment Ar	m:	C =	28	ft.	C = W - 2'

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	88.1	120.9	4933.6	1557.8	120.6	2.01	3	3.00
4	42.0	90.5	120.9	8734.6	3115.6	200.7	3.34	4	4.00
3	28.0	53.8	120.9	10241.0	4673.4	198.8	3.31	4	4.00
2	14.0	33.6	120.9	10711.4	6231.2	160.0	2.67	3	3.00

Shear Wall:	Ey3				
Panel Width:	N N	- VV	20.75	ft.	
Panel Thickness: Moment		t =	10.45	in.	
Arm:		D =	10.375	ft.	D = W / 2
Coupled Moment Arr	m:	C =	18.75	ft.	C = W - 2'

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	15.0	82.6	840.0	736.1	5.5	0.09	1	1.00
4	42.0	15.4	82.6	1486.8	1472.3	0.8	0.01	1	1.00
3	28.0	9.1	82.6	1741.6	2208.4	-24.9	N/A	N/A	N/A
2	14.0	5.7	82.6	1821.4	2944.6	-59.9	N/A	N/A	N/A

Shear Wall:	Dy4				
Panel Width:		W =	21	ft.	
Panel Thickness: Moment		t =	8.373	in.	
Arm:		D =	10.5	ft.	D = W / 2
Coupled Moment A	rm:	C =	19	ft.	C = W - 2'

Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Required Steel	Number of	Provided Steel
	h (ft.)	F (kips)	P (kips)	Mo (ft-k)	Mr (ft-k)	Tu (kips)	As,req (in. ²)	#9 Bars	As,provd (in. ²)
Roof	56.0	23.5	91.0	1316.0	820.8	26.1	0.43	1	1.00
4	42.0	24.0	91.0	2324.0	1641.5	35.9	0.60	1	1.00
3	28.0	14.3	91.0	2724.4	2462.3	13.8	0.23	1	1.00
2	14.0	9.0	91.0	2850.4	3283.1	-22.8	N/A	N/A	N/A

Shear Wall:	Ay5				
Panel Width:		W =	32	ft.	
Panel Thickness: Moment		t =	8.139	in.	
Arm:		D =	16	ft.	D = W / 2
Coupled Moment Ar	m:	C =	30	ft.	C = W - 2'

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	80.3	137.1	4496.8	1884.3	87.1	1.45	2	2.00
4	42.0	82.7	137.1	7970.2	3768.6	140.1	2.33	3	3.00
3	28.0	49.1	137.1	9345.0	5652.9	123.1	2.05	3	3.00
2	14.0	30.8	137.1	9776.2	7537.2	74.6	1.24	2	2.00

Shear Wall:	Cy6				
Panel Width:		VV =	28.33	ft.	
Panel Thickness: Moment		t =	11.49	in.	
Arm:		D =	14.165	ft.	D = W / 2
Coupled Moment Ar	m:	C =	26.33	ft.	C = W - 2'

							Required	Number	Provided
Tier	Height	Seismic	Dead	Overturning	Resisting	Uplift	Steel	of	Steel
			Р			Tu			As,provd
	h (ft.)	F (kips)	(kips)	Mo (ft-k)	Mr (ft-k)	(kips)	As,req (in. ²)	#9 Bars	(in. ²)
Roof	56.0	128.0	121.7	7168.0	1480.8	216.0	3.60	4	4.00
4	42.0	131.4	121.7	12686.8	2961.6	369.4	6.16	7	7.00
3	28.0	78.1	121.7	14873.6	4442.4	396.2	6.60	7	7.00
2	14.0	48.9	121.7	15558.2	5923.3	365.9	6.10	7	7.00

Shear Wall Spot Check

SHEAR	WALL SPO	OT CHECK	<u><</u>	<u>Cx7: 2</u> VJ	26 PU	1	
SHEAR C	APACITY '					56-0 "	
ØVn=	ØAcu (K	Jf'c + pt.f	?y)			t= 10"	
Ī	<u>Nw</u> = <u>56</u> = Rw 28.33	1.98 ≅ ∂	2.0 :. x=2.(c	- 38-4"-		
pVn= pVn=	$A_{CV} = \frac{1}{200}$ $P_{t} = \frac{100}{100}$ 0.6(3910) 5.99^{k}	$\frac{28.33' \times 12}{10 \text{ in}^2}$ $\frac{10 \text{ in}^2}{10 \text{ in}^2} = \frac{10}{10}$ $\frac{10}{10} = \frac{10}{10}$	0.00167 7 + 0.00167 6	0000)	#4'5 @1 f'c=6000 Po=116.2 Pc=132(3 Pc=1.2(46 Po=1203	-0" 0.C. (4)= 969.8 ^k (4)= 469.8	
CHECK	ØVn = 59 ° BOUNDARY	PK > VU= ELEMENT	226 ^K	= 0 2 ('		DOFESTAN	
Ste	ess = f = f: <u>12</u> 39	$\frac{P_{0}}{A} - \frac{M_{1}}{2}$ $\frac{P_{0}}{A} - \frac{M_{1}}{2}$ $\frac{05}{10} + \frac{1265(}{3.28}$	U-y [(12)(170) 3×10 ⁷	$M_{0} = 1$ $Y = 1$ $T = \frac{61}{12}$	$P \cdot h = 226$ 1.165' = 1 $h^3 = (10'')($ 12	K. 56' = 126561K 70" 340") ³ . 3,28×10	7.4
	f= 0.3 f= 1.0	308k _{sit} 0.78 095 ksi =	7ks; 1095psi	0.262 :	0.2(6000)	= 1200 psi	
	f	= 1095ps; < .: No	0.25°= 1200 BOUNDARY E	D psi Lement	NEEDED		